	Que	Answer	Marks	Guidance
1	(i)	$\begin{aligned} & \cos x+\lambda \sin x=R \cos (x-\alpha) \\ & \quad=R \cos x \cos \alpha+R \sin x \sin \alpha \\ & \Rightarrow \quad R \cos \alpha=1, R \sin \alpha=\lambda \\ & \Rightarrow \quad R^{2}=1+\lambda^{2}, R=\sqrt{ }\left(1+\lambda^{2}\right) \\ & \tan \alpha=\lambda(\mathrm{oe}) \\ & \Rightarrow \alpha=\arctan \lambda(\mathrm{oe}) \end{aligned}$	M1 B1 M1 A1 [4]	Correct pairs. Condone sign error (so accept $R \sin \alpha=-\lambda$) Positive square root only -isw. Accept $R=1 / \cos (\arctan \lambda)$ or $R=\lambda / \sin (\arctan \lambda)$ Follow through their pairs. $\tan \alpha=\lambda$ with no working implies both M marks. However, $\cos \alpha=1, \sin \alpha=\lambda \Rightarrow \tan \alpha=\lambda$ scores M0M1. First two M marks may be implied by combining one of the pairs with R, eg, $\cos \alpha=\frac{1}{\sqrt{ }\left(1+\lambda^{2}\right)}$ or $\sin \alpha=\frac{\lambda}{\sqrt{ }\left(1+\lambda^{2}\right)}$ $\alpha=\arccos \left(\frac{1}{\sqrt{ }\left(1+\lambda^{2}\right)}\right), \alpha=\arcsin \left(\frac{\lambda}{\sqrt{ }\left(1+\lambda^{2}\right)}\right)$ Accept embedded answers, eg, $\sqrt{ }\left(1+\lambda^{2}\right) \cos (x-\arctan \lambda)$ for full marks
1	(ii)	\max is R so $R=2$ $1+\lambda^{2}=4 \Rightarrow \lambda=\sqrt{ } 3$ $\alpha=\arctan \sqrt{ } 3=\pi / 3$	M1 A1 B1 [4]	M1 for using their $\sqrt{ }\left(1+\lambda^{2}\right)=R_{\max }, \mathrm{A} 0$ for $\pm \sqrt{ } 3$ as final answer www (eg $\lambda=1$ and $\cos \alpha=(1+\lambda)^{-1} \Rightarrow \alpha=\pi / 3$ is B 0) Exact answers only for final A and B marks

| (i) | $u=10, x=5 \ln 10=11.5$
 so OA $=5 \ln 10$
 when $u=1$,
 $y=1+1=2$ so OB $=2$
 When $u=10, y=10+1 / 10=10.1$
 So AC $=10.1$
 [5] | M1
 A1
 M1 | Using $u=10$ to find OA
 accept 11.5 or better
 Asing $u=1$ to find OB or $u=10$ to find AC |
| :--- | :--- | :--- | :---: | :--- |
| A1 | In the case where values are given in coordinates instead of
 OA=,OB=,AC=, then give A0 on the first occasion this happens
 but allow subsequent As.
 Where coordinates are followed by length eg B(0, 2), length=2 | | |

Question		Answer	Marks	Guidance
2	(ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} u}{\mathrm{~d} x / d u}=\frac{1-1 / u^{2}}{5 / u} \\ & {\left[=\frac{u^{2}-1}{5 u}\right]} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	their $\mathrm{dy} / \mathrm{du} / \mathrm{dx} / \mathrm{du}$ Award A1 if any correct form is seen at any stage including unsimplified (can isw)
		EITHER $\begin{aligned} & \text { When } u=10, \mathrm{~d} y / \mathrm{d} x=99 / 50=1.98 \\ & \begin{aligned} \tan (90-\theta)=1.98 \Rightarrow \theta & =90-63.2 \\ & =26.8^{\circ} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A2 } \end{aligned}$	substituting $\mathbf{u}=10$ in their expression or by geometry, say using a triangle and the gradient of the line 26.8°, or 0.468 radians (or better) cao SC M1M0A1A0 for 63.2° (or better) or 1.103 radians(or better)
		OR When $u=10, \mathrm{dy} / \mathrm{dx}=99 / 50=1.98$ $\begin{array}{r} \tan (90-\theta)=99 / 50 \Rightarrow \tan \theta=50 / 99 \\ \theta=26.8^{\circ} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A2 } \\ & {[6]} \end{aligned}$	allow use of their expression for M marks 26.8°, or 0.468 radians (or better) cao
2	(iii)	$\begin{aligned} & x=5 \ln u \Rightarrow x / 5=\ln u, u=\mathrm{e}^{x / 5} \\ & \Rightarrow \quad y=u+1 / u=\mathrm{e}^{x / 5}+\mathrm{e}^{-x / 5} \end{aligned}$	M1 A1 [2]	Need some working Need some working as AG

	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	$\left(1+t^{2}\right)^{-2} \times k t$ for method
	M1	
	E1	
	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[7]} \end{aligned}$	finding t

$\begin{aligned} & \text { 7(i) } \mathrm{d} x / \mathrm{d} u=2 u, \mathrm{~d} y / \mathrm{d} u=6 u^{2} \\ & \begin{array}{c} \Rightarrow \quad \frac{d y}{d x}=\frac{d y / d u}{d x / d u}=\frac{6 u^{2}}{2 u} \\ =3 u \end{array} \\ & \text { OR } y=2(x-1)^{3 / 2}, d y / d x=3(x-1)^{1 / 2}=3 u \end{aligned}$	B1 M1 A1 [3]	both $2 u$ and $6 u^{2}$ $\mathrm{B} 1(y=\mathrm{f}(x))$, M1 differentiation, A1
$\begin{aligned} & \text { (ii) } \operatorname{At}(5,16), u=2 \\ & \Rightarrow \quad \mathrm{~d} y / \mathrm{d} x=6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	cao

$\begin{array}{ll} 8 & x=\frac{1}{t}-1 \Rightarrow \frac{1}{t}=x+1 \\ \Rightarrow & t=\frac{1}{x+1} \\ \Rightarrow & y=\frac{2+\frac{1}{x+1}}{1+\frac{1}{x+1}}=\frac{2 x+2+1}{x+1+1}=\frac{2 x+3}{x+2} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$	Solving for t in terms of x or y Subst their t which must include a fraction, clearing subsidiary fractions/ changing the subject oe www
$\text { or } \begin{aligned} \frac{3+2 x}{2+x} & =\frac{3+\frac{2-2 t}{t}}{2+\frac{1-t}{t}} \\ & =\frac{3 t+2-2 t}{2 t+1-t} \\ & =\frac{t+2}{t+1}=y \end{aligned}$	M1 A1 M1 E1 [4]	substituting for x or y in terms of t clearing subsidiary fractions/changing the subject

